Suppression of Tumor Immune Activity in Adrenocortical Carcinoma with Excess Glucocorticoid

Andrew E. Greenstein1, Mouhammad Amir Habra2, Marzena Murz1, Pawel Biernat3, Marek J. Pietak4, Andreas Grauer5, and Stacie Peacock Shepherd6

Concept Therapeutics, Menlo Park, CA, USA; 1MD Anderson Cancer Center, Houston, TX, USA; 2Ardigen SA, Krakow, Poland; 3Formerly Concept Therapeutics, Menlo Park, CA, USA

Contact: agreenstein@corcept.com

 Orientation: Glucocorticoid (GC) excess is a common feature of Adrenocortical Carcinoma (ACC), a rare endocrine cancer, and is likely to contribute to tumor progression and treatment resistance. However, the mechanisms through which GC affect tumor biology are not well understood.

Methods: A newly derived gene signature was applied to other tumor types in TCGA to identify those with GC+ like characteristics. The gene signature was then applied to other tumors types in TCGA to identify those with GC+ like characteristics. The gene signature was then applied to other tumors types in TCGA to identify those with GC+ like characteristics.

Results: The gene signature was then applied to other tumors types in TCGA to identify those with GC+ like characteristics. The gene signature was then applied to other tumors types in TCGA to identify those with GC+ like characteristics. The gene signature was then applied to other tumors types in TCGA to identify those with GC+ like characteristics.

Discussion: The gene signature was then applied to other tumors types in TCGA to identify those with GC+ like characteristics. The gene signature was then applied to other tumors types in TCGA to identify those with GC+ like characteristics. The gene signature was then applied to other tumors types in TCGA to identify those with GC+ like characteristics.

Conclusion: The gene signature was then applied to other tumors types in TCGA to identify those with GC+ like characteristics. The gene signature was then applied to other tumors types in TCGA to identify those with GC+ like characteristics. The gene signature was then applied to other tumors types in TCGA to identify those with GC+ like characteristics.

Supported by funding from Concept Therapeutics

Presented at the American Association for Cancer Research (AACR) Virtual Annual Meeting II, June 22-24, 2020